
Chapter 41

Rigid-body transforms and2

mapping3

Reading
1. LaValle Chapter 3.2 for rotation matrices, Chapter 4.1-4.2 for

quaternions

2. Thrun Chapter 9.1-9.2 for occupancy grids

3. OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees
http://www.arminhornung.de/Research/pub/hornung13auro.pdf,
also see https://octomap.github.io.

4. Robot Operating System
http://www.willowgarage.com/sites/default/files/icraoss09-
ROS.pdf, Optional: Lightweight Communications and Marshalling
(LCM) system
https://people.csail.mit.edu/albert/pubs/2010-huang-olson-moore-
lcm-iros.pdf

5. A Perception-Driven Autonomous Urban Vehicle
https://april.eecs.umich.edu/media/pdfs/mitduc2009.pdf

6. Optional reading: Thrun Chapter 10 for simultaneous localization
and mapping

In the previous chapter, we looked at ways to estimate the state of the robot4

in the physical world. We kept our formulation abstract, e.g., the way the robot5

moves was captured by an abstract expression like xk+1 = f(xk, uk) + ϵ6

and observations yk = g(xk) + ν were similarly opaque. In other to actually7

implement state estimation algorithms on real robots, we need to put concrete8

functions in place of f, g.9

1

http://www.arminhornung.de/Research/pub/hornung13auro.pdf
https://octomap.github.io
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://people.csail.mit.edu/albert/pubs/2010-huang-olson-moore-lcm-iros.pdf
https://people.csail.mit.edu/albert/pubs/2010-huang-olson-moore-lcm-iros.pdf
https://april.eecs.umich.edu/media/pdfs/mitduc2009.pdf

2

This is easy to do for some robots, e.g., the robot in Problem 1 in Home-1

work 1 moved across cells. Of course real robots are a bit more complicated,2

e.g., a car cannot move sideways (which is a huge headache when you par-3

allel park). In the first half of this chapter, we will look at how to model the4

dynamics f using rigid-body transforms.5

The story of measurement models and sensors is similar. Although we6

need to write explicit formulae in place of the abstract function g. In the7

second half, we will study occupancy grids and dig deeper into a typical8

state-estimation problem in robotics, namely that of mapping the location of9

objects in the world around the robot.10

4.1 Rigid-Body Transformations11

Let us imagine that the robot has a rigid body, we think of this as a subset12

A ⊂ R2. Say the robot is a disc13

A =
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
.

This set A changes as the robot moves around, e.g., if the center of mass of14

the robot is translated by xt, yt ∈ R the set A changes to15

A′ = {(x+ xt, y + yt) : (x, y) ∈ A} .

The concept of “degrees of freedom” denotes the maximum number of in-16

dependent parameters needed to completely characterize the transformation17

applied to a robot. Since the set of allowed values (xt, yt) is a two-dimensional18

subset of R2, then the degrees of freedom available to a translating robot is19

two.20

21

As the above figure shows, there are two ways of thinking about this transfor-22

mation. We can either think of the robot transforming while the co-ordinate23

frame of the world is fixed, or we can think of it as the robot remaining sta-24

tionary and the co-ordinate frame undergoing a translation. The second style25

is useful if you want to imagine things from the robot’s perspective. But the26

first one feels much more natural and we will therefore exclusively use the27

first notion.28

If the same robot if it where rotated counterclockwise by some angle29

θ ∈ [0, 2π], we would map30

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ).

3

Such a map can be written as multiplication by a 2×2 rotation matrix1

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
. (4.1)

to get2 [
x cos θ − y sin θ

x sin θ + y cos θ

]
= R(θ)

[
x

y

]
.

The transformed robot is thus given by3

A′ =

{
R

[
x

y

]
: (x, y) ∈ A

}
.

If we perform both rotation and translation, we can the transformation using a4

single matrix5

T =

cos θ − sin θ xt

sin θ cos θ yt
0 0 1

 (4.2)

and this transformation looks like6 x cos θ − y sin θ + xt

x sin θ + y cos θ + yt
1

 = T

xy
1

 .

The point (x, y, 1) ∈ R3 is called homogeneous coordinate space correspond-7

ing to (x, y) ∈ R3 and the matrix T is called a homogeneous transformation8

matrix. The peculiar names comes from the fact that even if the matrix T9

maps rotations and translations of rigid bodies A ⊂ R2, it is just a linear10

transformation of the point (x, y, 1) if viewed in the larger space R3.

 It is important to remember that
T represents rotation followed by a
translation, not the other way
around.

11

Rigid-body transformations The transformations R ∈ R2×2 or T ∈ R3×3
12

are called rigid-body transformations. Mathematically, it means that they do13

not cause the distance between any two points inside the set A to change. Rigid-14

body transformations are what are called an orthogonal group in mathematics.15

A group is a mathematical object which imposes certain conditions upon16

how two operations, e.g., rotations, can be composed together. For instance,17

if G is the group of rotations, then (i) the composition of two rotations is a18

rotation, we say that it satisfies closure R(θ1)R(θ2) ∈ G, (ii) rotations are19

associative20

R(θ1) {R(θ2)R(θ3)} = {R(θ1)R(θ2)}R(θ3),

and, (iii) there exists an identity and inverse rotation21

R(0), R(−θ) ∈ G.

An orthogonal group is a group whose operations preserve distances in22

Euclidean space, i.e., g ∈ G is an element of the group that acts on two points23

4

x, y ∈ Rd then1

∥g(x)− g(y)∥ = ∥x− y∥.

If we identify the basis in Euclidean space to be the set of orthonormal vec-2

tors {e1, . . . , ed}, then equivalently, the orthogonal group O(d) is the set of3

orthogonal matrices4

O(d) :=
{
O ∈ Rd×d : OO⊤ = O⊤O = I

}
.

This implies that the square of the determinant of any element a ∈ O(d) is 1,5

i.e., det(a) = ±1. ? Check that any rotation matrix R

belongs to an orthogonal group.
6

The Special Orthogonal Group is a sub-group of the orthogonal group7

where the determinant of each element is +1. You can see that rotations are a8

special orthogonal group. We denote rotations of objects in R2 as9

SO(2) :=
{
R ∈ R2×2 : R⊤R = RR⊤ = I, det(R) = 1

}
. (4.3)

Each group element g ∈ SO(2) denotes a rotation of the XY -plane about the10

Z-axis. The group of 3D rotations is called the Special Orthogonal Group11

SO(3) and is defined similarly12

SO(3) :=
{
R ∈ R3×3 : R⊤R = RR⊤ = I, det(R) = 1

}
. (4.4)

The Special Euclidean Group SE(2) is simply a composition of a 2D13

rotation R ∈ SO(2) and a 2D translation R2 ∋ v ≡ (xt, yt)14

SE(2) =

{[
R v

0 1

]
: R ∈ SO(2), v ∈ R2

}
⊂ R3×3. (4.5)

The Special Euclidean Group SE(3) is defined similarly as15

SE(3) =

{[
R v

0 1

]
: R ∈ SO(3), v ∈ R3

}
⊂ R4×4; (4.6)

again, remember that it is rotation followed by a translation.16

4.1.1 3D transformations17

Translations and rotations in 3D are conceptually similar to the two-dimensional18

case; however the details appear a bit more difficult because rotations in 3D19

are more complicated.20

5

Figure 4.1: Any three-dimensional rotation can be described as a sequence of rotations
about each of the cardinal axes. We usually give these specific names: rotation about
the Z-axis is called yaw, rotation about the X-axis is called roll and rotation about
Y -axis is called pitch. You should commit this picture and these names to memory
because it will be of enormous to think about these rotations intuitively.

 Here is how I remember these
names. Say you are driving a car,
usually in robotics we take the
X-axis to be longitudinally forward,
the Y -axis is your left hand if you
are in the driver’s seat and the
Z-axis points up by the right-hand
thumb rule. Roll

is what a dog does when it rolls, it
rotates about the X-axis. Pitch is
what a plane

does when it takes off, its nose lifts
up and it rotates about the Y -axis.
Yaw is the one leftover.

Euler angles We know that a pure counter-clockwise rotation about one of1

the axes is written in terms of a matrix, say yaw of α-radians about the Z-axis2

Rz(α) =

cosα − sinα 0

sinα cosα 0

0 0 1

 .

Notice that this is a 3×3 matrix that keeps the Z-coordinate unchanged and3

only affects the other two coordinates. Similarly we have for pitch (β about4

the Y -axis) and roll (γ about the X-axis)5

Ry(β) =

 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 , Rx(γ) =

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 .

By convention, a rotation matrix in three dimensions is understood as a se-6

quential application of rotations, first roll, then pitch, and then yaw7

R3×3 = R(α, β, γ) = Rz(α)Ry(β)Rx(γ). (4.7)

The angles (α, γ, γ) are called Euler angles. Imagine how the body frame of8

the robot changes as successive rotations are applied. If you were sitting in a9

car, a pure yaw would be similar to the car turning left; the Z-axis correspond-10

ing to this yaw would however only be pointing straight up perpendicular to11

the ground if you had not performed a roll/pitch before. If you had, the Z-axis12

of the body frame with respect to the world will be tiled.13

Order of 3D rotations matter14

6

1

Another important thing to note is that one single parameter determines all2

possible rotations about one axis, i.e., SO(2). But three Euler angles are used3

to parameterize general rotations in three-dimensions.4

Rotation matrices to Euler angles We can back-calculate the Euler angles5

from a rotation matrix as follows. Given an arbitrary matrix6

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,

we set7

α = tan−1(r21/r11)

β = tan−1

(
−r31/

√
r232 + r233

)
γ = tan−1(r32/r33).

(4.8)

For each angle, the corresponding quadrant for the Euler angle is determined8

using the signs of the numerator and the denominator. So you should use9

the function atan2 in Python/C++ to implement these expressions correctly.10

Notice that some of the expressions have r11 and r33 in the denominator, this11

means that we need r11 = cosα cosβ = 0 and r33 = cosβ cos γ = 0. Euler12

angles do not completely parametrize the group of rotations SO(3). This is13

really an indicator that this particular physical rotation can be parameterized14

in two different ways using Euler angles, so the map from rotation matrices to15

Euler angles is not unique.16

Homogeneous coordinates in three dimensions Just like the 2D case, we17

can define a 4×4 matrix that transforms points (x, y, z) ∈ R3 to their new18

locations after a rotation by Euler angles (α, β, γ) and a translation by a vector19

v = (xt, yt, zt) ∈ R3
20

T =

[
R(α, β, γ) v

0 1

]
.

4.1.2 Rodrigues’ formula: an alternate view of rotations21

Consider a point r(t) ∈ R3 that is being rotated about an axis denoted by a22

unit vector ω ∈ R3 with an angular velocity of 1 radian/sec. The instantaneous23

7

linear velocity of the head of the vector is1

ṙ(t) = ω × r(t) ≡ ŵr(t) (4.9)

where the × denotes the cross-product of the two vectors a, b ∈ R3
2

a× b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

which we can equivalently denote as a matrix vector multiplication a× b = âb3

where4

â =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (4.10)

is a skew-symmetric matrix. The solution of the differential equation (4.9) at5

time t = θ is6

r(θ) = exp(ω̂θ) r(0)

where the matrix exponential of a matrix A is defined as7

exp(A) = I +A+
A2

2!
+

A3

3!
+ . . . =

∞∑
k=0

Ak

k!
.

This is an interesting observation: a rotation about a fixed axis ω by an angle θ8

can represented by the matrix9

R = exp(ŵ θ).

You can check that this matrix is indeed a rotation by showing that R⊤R = I10

and that det(R) = +1. We can expand the matrix exponential and collect odd11

and even powers of ω̂ to get12

R = I + sin θ ω̂ + (1− cos θ)ŵ2. (4.11)

which is the Rodrigues’ formula that relates the angle θ and the axis ω to the13

rotation matrix. We can also go in the opposite direction, i.e., given a matrix14

R calculate what angle θ and axis ω it corresponds to using15

cos θ =
tr(R)− 1

2

ŵ =
R−R⊤

2 sin θ
.

(4.12)

4.2 Quaternions16

We know two ways to think about rotations: we can either think in terms of the17

three Euler angles (α, β, γ), or we can consider a rotation matrix R ∈ R3×3.18

We also know ways to go to and fro between these two forms with the caveat19

that solving for Euler angles using (4.8) may be degenerate in some cases.20

While rotation matrices are the most general representation of rotations, using21

8

them in computer code is cumbersome (it is, after all, a matrix of 9 elements),1

imagine an EKF where the state is a rotation matrix. You can certainly2

implement the same filter using Euler angles but doing so requires special3

care due to the degeneracies. Quaternions are a neat way to avoid both these4

problems, they parametrize the space of rotations using 4 numbers and do not5

have degeneracies.

 Quaternions were invented by
British mathematician William
Rowan Hamilton while walking
along a bridge with his wife. He was
quite excited by this discovery and
promptly graffitied the expression
into the stone of the bridge

6

The central idea behind quaternions is Euler’s theorem which says that7

any 3D rotation can be considered as a pure rotation by an angle θ ∈ R about8

an axis given by the unit vector ω. This is the result that we also exploited in9

Rodrigues’ formula.10

Figure 4.2: Any rotation in 3D can be represented using a unit vector ω and an angle
θ ∈ R. Notice that there are two ways to encode the same rotation, the unit vector −ω
and angle 2π− θ would give the same rotation. Mathematicians say this as quaternions
being a double-cover of SO(3).

A quaternion q as a four-dimensional vector q ≡ (u0, u1, u2, u3) and we11

write it as12

q ≡ (u0, u), or

q = u0 + u1i+ u2j + u3k,
(4.13)

with i, j, k being three “imaginary” components of the quaternion with “complex-13

numbers like” relationships14

i2 = j2 = k2 = ijk = −1. (4.14)

It follows from these relationships that15

ij = −ji = k, ki = −ik = j, and jk = −jk = i.

Although you may be tempted to think about this, these imaginary components16

i, j, k have no relationship with the square roots of negative unity used to17

define standard complex numbers. You should simply think of the quaternion18

as a four-dimensional vector in some space. A unit quaternion, i.e., one with19

u2
0 + u2

1 + u2
2 + u2

3 = 1,

is special: unit quaternions can be used to represent rotations in 3D.20

Quaternion to axis-angle representation The quaternion q = (u0, u) cor-21

responds to to a counterclockwise rotation of angle θ about a unit vector ω22

9

where θ and ω are such that1

u0 = cos
θ

2
, and u = sin

θ

2
ω. (4.15)

So given an axis-angle representation of rotation like in Rodrigues’ formula2

(θ, ω) we can write the quaternion as3

q =

(
cos

θ

2
, sin

θ

2
ω

)
.

Using this, we can also compute the inverse of a quaternion (rotation of angle4

θ about the opposite axis −ω) as5

q−1 :=

(
cos

θ

2
,− sin

θ

2
ω

)
.

The inverse quaternion is therefore the quaternion where all entries except the6

first have their signs flipped.7

Figure 4.3: Adding two quaternions is (intuitively) defined as the element-wise sum;
Multiplication, however, is defined differently from what one might suspect

Multiplication of quaternions Just like two rotation matrices multiply8

together to give a new rotation (rotations are a group), since quaternions are9

also a representation for the group of rotations, we can also multiply two10

quaternions q1 = (u0, u), q2 = (v0, v) together using the quaternion identities11

for i, j, k in (4.14) to get a new quaternion12

q1q2 ≡ (u0, u) · (v0, v) = (u0v0 − u⊤v, u0v + v0u+ u× v).
 Quaternions belong to a larger
group than rotations called the
Symplectic Group Sp(1).

13

Pure quaternions A pure quaternion is a quaternion with a zero scalar value14

u0 = 0. This is very useful to simply store a standard 3D vector u ∈ R3 as a15

quaternion (0, u). We can then rotate points easily between different frames16

as follows. Given a vector x ∈ R3 we can form a quaternion (0, x) and show17

that18

q · (0, x) · q∗ = (0, R(q)x). (4.16)

where q∗ = (u0,−u) is the conjugate quaternion of q = (u0, u); the conjugate19

is the same as the inverse for unit quaternions. Notice how the right-hand side20

is the vector R(q)x corresponding to the vector x rotation by a matrix R(q).21

10

Quaternions to rotation matrix The rotation matrix corresponding to a1

quaternion is2

R(q) = (u2
0 − u⊤u)I3×3 + 2

u0u

∥u∥
+ 2uu⊤

=

 2(u2
0 + u2

1)− 1 2(u1u2 − u0u3) 2(u1u3 + u0u2)

2(u1u2 + u0u3) 2(u2
0 + u2

2)− 1 2(u2u3 − u0u1)

2(u1u3 − u0u2) 2(u2u3 − u0u1) 2(u2
0 + u2

3)− 1

 .
(4.17)

Using this you can show the identity that rotation matrix corresponding to the3

product of two quaternions is the product of the individual rotation matrices4

R(q1q2) = R(q1)R(q2).

Rotation matrix to quaternion We can also go in the reverse direction.5

Given a rotation matrix R, the quaternion is6

u0 =
1

2

√
r11 + r22 + r33 + 1

if u0 ̸= 0, u1 =
r32 − r23

4u0

u2 =
r13 − r31

4u0

u3 =
r21 − r12

4u0

if u0 = 0, u1 =
r13r12√

r212r
2
13 + r212r

2
23 + r213r

3
23

u2 =
r12r23√

r212r
2
13 + r212r

2
23 + r213r

3
23

u3 =
r13r23√

r212r
2
13 + r212r

2
23 + r213r

3
23

.

(4.18)

4.3 Occupancy Grids7

Rotation matrices and quaternions let us capture the dynamics of a rigid robot8

body. We will next look at how to better understand observations.9

What is location and what is mapping? Imagine a robot that is moving10

around in a house. A natural representation of the state of this robot is the 3D lo-11

cation of all the interesting objects in the room, e.g., https://www.youtube.com/watch?v=Qe10ExwzCqk.12

At each time-instant, we record an observation from our sensor (in this case,13

a camera) that indicates how far an object is from the robot. This helps us14

discover the location of the objects in the room. After gathering enough ob-15

servations, we would have created a map of the entire house. This map is the16

set of positions of all interesting objects in the room. Such a map is called a17

“feature map”, these are all the green points in the image below18

https://www.youtube.com/watch?v=Qe10ExwzCqk

11

1

The main point to understand about feature map is that we can hand over2

this map to another robot that comes to the same house. The robot compares3

images from its camera and if it finds one of the objects inside the map, it4

can get an estimate of its location/orientation in the room with respect to the5

known location of the object in the map. The map is just a set of “features”6

that help identify salient objects in the room (objects which can be easily7

detected in images and relatively uniquely determine the location inside the8

room). The second robot using this map to estimate its position/orientation in9

the room is called the localization problem. We already know how to solve10

the localization problem using filtering.11

The first robot was solving a harder problem called Simultaneous Local-12

ization And Mapping (SLAM): namely that of discovering the location of both13

itself and the objects in the house. This is a very important and challenging14

problem in robots but we will not discuss it further.15

In this section, we will solve a part of the SLAM problem, namely the
mapping problem. We will assume that we know the position/orientation
of the robot in the 3D world, and want to build a map of the objects in
the world. We will discuss grid maps, which are a more crude way of
representing maps than feature maps but can be used easily even if there
are lots of objects.

Grid maps We will first discuss two-dimensional grid maps, they look as16

follows.17

12

Figure 4.4: A grid map (also called an occupancy grid) is a large gray-scale image, each
pixel represents a cell in the physical world. In this picture, cells that are occupied are
colored black and empty cells represent free space. A grid map is a useful representation
for a robot to localize in this house using observations from its sensors and comparing
those to the map.

To get a quick idea of what we want to do, you can watch the mapping1

being performed in https://www.youtube.com/watch?v=JJhEkIA1xSE. We are2

interested in learning such maps from the observations that a robot collects as3

it moves around the physical space. Let us make two simplifying assumptions.4

Assumption 1: each cell is either free or occupied5

6

This is neat: we can now model each cell as a binary random variable that7

indicates occupancy. Let the probability that the cell mi be occupied be p(mi)8

9

If we have p(mi) = 0, then the cell is not occupied and if we have p(mi) = 1,10

then the cell is occupied. A priori, we do not know the state of the cell so we11

will set the prior probability to be p(mi) = 0.5.12

Assumption 2: the world is static Objects in the world do not move. This13

is reasonable if we are interested in estimating in building a map of the walls14

inside the room. Note that it is not a reasonable assumption if there are moving15

https://www.youtube.com/watch?v=JJhEkIA1xSE

13

people inside the room. We will see a clever hack where the Bayes rule helps1

automatically disregard such moving objects in this section.2

Assumption 3: cells are independent of each other This is another drastic3

simplification. The state of our system is the occupancy of each cell in the4

grid map. We assume that before receiving any observations, the occupancy of5

each individual cell is independent; it is a Bernoulli variable with probability6

1/2 since we have assumed the prior to be uniform in Assumption 1.7

8

This means that if cells in the map are denoted by a vector m = (m1, . . . ,),9

then the probability of the cells being occupied/not-occupied can be written as10

11

p(m) =
∏
i

p(mi). (4.19)

12

4.3.1 Estimating the map from the data13

Say that the robot pose (position and orientation) is given by the sequence14

x1, . . . , xk. While proceeding along this sequence, the robot receives obser-15

vations y1, . . . , yk. Our goal is to estimate the state of each cell mi ∈ {0, 1}16

(aka “the map” m = (m1,m2, . . . ,))17

P(m | x1, . . . , xk, y1 . . . , yk) =
∏
i

P(mi | x1, . . . , xk, y1 . . . , yk). (4.20)

This is called the “static state” Bayes filter and is conceptually exactly the18

same as the recursive application of Bayes rule in Chapter 2 for detecting19

whether the door was open or closed.20

We will use a short form to keep the notation clear21

y1:k = (y1, y2, . . . , yk);

the quantity x1:k is defined similarly. As usual we will use a recursive Bayes22

14

filter to compute this probability as follows.1

P(mi | x1:k, y1:k)
Bayes rule

=
P(yk |mi, y1:k−1, x1:k)P(mi | y1:k−1, x1:k)

P(yk | y1:k−1, x1:k)

Markov
=

P(yk |mi, xk)P(mi | y1:k−1, x1:k−1)

P(yk | y1:k−1, x1:k)

Bayes rule
=

P(mi | yk, xk)P(yk | xk)P(mi | y1:k−1, x1:k−1)

P(mi | xk)P(yk | y1:k−1, x1:k)

Markov
=

P(mi | yk, xk)P(yk | xk)P(mi | y1:k−1, x1:k−1)

P(mi)P(yk | y1:k−1, x1:k)
.

(4.21)
We have a similar expression for the opposite probability2

P(¬mi | x1:k, y1:k) =
P(¬mi | yk, xk)P(yk | xk)P(¬mi | y1:k−1, x1:k−1)

P(¬mi)P(yk | y1:k−1, x1:k)
.

Let us take the ratio of the two to get3

P(mi | x1:k, y1:k)

P(¬mi | x1:k, y1:k)
=

P(mi | yk, xk)

P(¬mi | yk, xk)

P(mi | y1:k−1, x1:k−1)

P(¬mi | y1:k−1, x1:k−1)

P(¬mi)

P(mi)

=
P(mi | yk, xk)

1− P(mi | yk, xk)︸ ︷︷ ︸
uses observation yk

P(mi | y1:k−1, x1:k−1)

1− P(mi | y1:k−1, x1:k−1)︸ ︷︷ ︸
recursive term

1− P(mi)

P(mi)︸ ︷︷ ︸
prior

.

(4.22)
This is called the odds ratio. Notice that the first term uses the latest obser-4

vation yk, the second term can be updated recursively because it is a similar5

expression as the left-hand side and the third term is a prior probability of the6

cell being occupied/non-occupied. Let us rewrite this formula using the log-7

odds-ratio that makes implementing it particularly easy. The log-odds-ratio of8

the probability p(x) of a binary variable x is defined as9

l(x) = log
p(x)

1− p(x)
, and p(x) = 1− 1

1 + el(x)
.

The product in (4.22) now turns into a sum as10

l(mi | y1:k, x1:k) = l(mi | yk, xk)+ l(mi | y1:k−1, x1:k−1)− l(mi). (4.23)

This expression is used to update the occupancy of each cell. The term11

sensor model = l(mi | yk, xk)

is different for different sensors and we will investigate it next.12
? We assumed that the map was
static. Can you think of why (4.23)
automatically lets us handle some
moving objects? Think of what the
prior odds l(mi) does to the
log-odds-ratio l(mi | y1:k, x1:k).

4.3.2 Sensor models13

Sonar This works by sending out an ultrasonic chirp and measuring the time14

between emission and reception of the signal. The time gives an estimate of15

the distance of an object to the robot.16

15

1

The figure above shows a typical sonar sensor (the two “eyes”) on a low-cost2

robot. Data from the sensor is shown on the right, a sonar is a very low3

resolution sensor and has a wide field of view, say 15 degrees, i.e., it cannot4

differentiate between objects that are within 15 degrees of each other and5

registers them as the same point. Sophisticated sonar technology is used today6

in marine environments (submarines, fish finders, detecting mines etc.).7

Radar works in much the same way as a sonar except that it uses pulses8

of radio waves and measures the phase difference between the transmitted9

and the received signal. This is a very versatile sensor (it was invented by the10

US army to track planes and missiles during World War II) but is typically11

noisy and requires sophisticated processing to be used for mainstream robotics.12

Autonomous cars, collision warning systems on human-driven cars, weather13

sensing, and certainly the military use the radar today. The following picture14

and the video https://www.youtube.com/watch?v=hwKUcu_7F9E will give15

you an appreciation of the kind of data that a radar records. Radar is a very16

long range sensor (typically 150 m) and works primarily to detect metallic17

objects.18

19

LiDAR LiDAR, which is short for Light Detection and Ranging, (https://en.wikipedia.org/wiki/Lidar)20

is a portmanteau of light and radar. It is a sensor that uses a pulsed laser as the21

source of illumination and records the time it takes (nanoseconds typically) for22

the signal to return to the source. See https://www.youtube.com/watch?v=NZKvf1cXe8s23

for how the data from a typical LiDAR (Velodyne) looks like. While a Velo-24

dyne contains an intricate system of rotating mirrors and circuitry to measure25

time elapsed, there are new solid state LiDARs that are rapidly evolving to26

match the needs of the autonomous driving industry. Most LiDARs have a27

usable range of about 100 m.28

https://www.youtube.com/watch?v=hwKUcu_7F9E
https://en.wikipedia.org/wiki/Lidar
https://www.youtube.com/watch?v=NZKvf1cXe8s

16

 Basic Driving
• Safe driving by default for various driving conditions
• Behaviors naturally emerge from the planning system:
–Slow down near turns, yield and merge into traffic
–Passing other vehicles, 3 point turn to change direction, park, etc.

1

A typical autonomous car This is a picture of MIT’s entry named Talos to2

the DARPA Urban Challenge (https://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2007))3

which was a competition where teams had to traverse a 60 mile urban route4

within 6 hours, while obeying traffic laws, understanding incoming vehicles5

etc. Successful demonstrations by multiple teams led by (CMU, Stanford,6

Odin College, MIT, Penn and Cornell) in this competition jump-started the7

wave of autonomous driving. While the number of sensors necessary to drive8

well has come down (Tesla famously does not like to use LiDARs and rely ex-9

clusively on cameras and radars), the type of sensors and challenges associated10

with them remain essentially the same.

 Waymo’s autonomous car

11

12

4.3.3 Back to sensor modeling13

Let us go back to understanding our sensor model l(mi | yk, xk) where mi14

is a particular cell of the occupancy grid, yk and xk are the observations and15

robot position/orientation at time k.16

https://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2007)

17

Figure 4.5: Model for sonar data. (Top) A sonar gives one real-valued reading
corresponding to the distance measured along the red axis. (Bottom) if we travel along
the optical axis, the occupancy probability P(mi | yk = z, xk) can be modeled as a
spike around the measured value z. It is very important to remember that range sensors
such as sonar gives us three kinds of information about this ray: (i) all parts of the
environment up to ≈ z are unoccupied (otherwise we would not have recorded z), (ii)
there is some object at z which resulted in the return, (iii) but we do not know anything
about what is behind z. So incorporating a measurement yk from a sonar/radar/lidar
involves not just updating the cell which corresponds to the return, but also updating
the occupancy probabilities of every grid call along the axis.

Figure 4.6: (Left) A typical occupancy grid created using a sonar sensor by updating
the log-odds-ratio l(mi | x1:k, y1:k) for all cells i for multiple time-steps k. At the end
of the map building process, if l(mi | x1:k, y1:k) > 0 for a particular cell, we set its
occupancy to 1 and to zero otherwise, to get the maximum-likelihood estimate of the
occupancy grid on the right.

LiDAR model When we say that a LiDAR is a more accurate sensor than1

the sonar, what we really mean is that the sensor model P(mi | yk, xk) looks2

18

as follows.1

2

As a result, we can create high-resolution occupancy grids using a LiDAR.3

4

5

? How will you solve the
localization problem given the map?
In other words, if we know the
occupancy grid of a building as
estimated in a prior run, and we now
want to find the position/orientation
of the robot traveling in this building,
how show we use these sensors?

4.4 3D occupancy grids6

Two-dimensional occupancy grids are a fine representation for toy problems7

but they run into some obvious problems: since the occupancy grid is a “top8

19

view” of the world, we cannot represent non-trivial objects in it correctly1

(a large tree with a thin trunk eats up all the free space). We often desire a2

fundamentally three-dimensional representation of the physical world.3

4

We could simply create cells in 3D space and our method for occupancy5

grid would work but this is no longer computationally cheap. For instance,6

if we want to build a map of Olsson Hall (say 50 m × 50 m area and height7

of 25 m), a 3D grid map with a resolution of 5 cm × 5 cm × cm would have8

about 500 million cells (if we store a float in each cell this map will require9

about 2 GB memory). It would be cumbersome to carry around so many cells10

and update their probabilities after each sensor reading (a Velodyne gives data11

at about 30 Hz). More importantly, observe that most of the volume inside12

Olsson is free space (inside of offices, inner courtyard etc.) so we do not really13

need fine resolution in those regions.14

Octrees We would ideally have an occupancy grid whose resolution adapts15

with the kind of objects that are detected by the sensors. If nearby cells are16

empty we want to collapse them together to save on memory and computation,17

on the other hand, if nearby cells are all occupied, we want to refine the18

resolution in that area so has to more accurately discern the shape of the19

underlying objects. Octrees are an efficient representation for 3D volumes.20

21

An octree is a hierarchical data structure that recursively sub-divides the 3D22

space into octants and allocates volumes as needed for a particular data point23

observed by a range sensor. It is analogous to a kd-tree. Imagine if the entire24

20

space in the above picture were empty (the tree only has a root node), and we1

receive a reading corresponding to the dark shaded region. An octree would2

sub-divide the space starting from the root (each node in the tree populates3

is the parent of its eight child octants) recursively until some pre-determined4

minimum resolution is reached. This leaf node is grid cell; notice how different5

cells in the octree have different resolutions. Occupancy probabilities of each6

leaf node are updated using the same formula as that of (4.23). A key point7

here is that octrees are designed for accurate sensors (LiDARs) where there is8

not much noise in the observations returned by the sensor (and thereby we do9

not refine unnecessary parts of the space)10

Octrees are very efficient at storing large map, I expect you can store the11

entire campus of UVA in a few gigabytes

 You can find LiDAR maps of the
entire United States (taken from a
plane) at https://www.usgs.gov/core-
science-systems/ngp/3dep

Ray tracing (following all the cells12

mi in tree along the axis of the sensor in Figure 4.5) is harder in this case but13

there are efficient algorithms devised for this purpose. An example OctoMap14

(an occupancy map created using an Octree) of a building on the campus of15

the University of Freiburg is shown below.

16

4.5 Local Map17

In this chapter, we primarily discussed occupancy grids of static environments18

as the robot moves around in the environment. The purpose of doing so is lo-19

calization, namely, finding the pose of the robot by comparing the observations20

of the sensors with the map (think of the particle filter localization example21

in Chapter 3). In typical problems, we often maintain two kinds of maps, (i)22

a large occupancy grid for localization (say as big as city), and (ii) another23

smaller map, called the local map, that is used to maintain the locations of24

objects (typically objects that can move) in the vicinity of the robot, say a 10025

m × 100 m area.26

https://www.usgs.gov/core-science-systems/ngp/3dep
https://www.usgs.gov/core-science-systems/ngp/3dep

21

The local map is used for planning and control purposes, e.g., to check if1

the planned trajectory of the robot does not collide with any known obstacles.2

See an example of the local map at the 1:42 min mark at3

https://www.youtube.com/watch?v=2va15BE-7lQ. Some people also call the4

local map a “cost map” because occupied cells in the local map indicate a5

high collision cost of moving through that cell. The local map is typically6

constructed in the body frame and evolves as the robot moves around (objects7

appear in the front of the robot and are spawned in the local map and disappear8

from the map at the back as the robot moves forward).9

You should think of the map (and especially the local map) as the
filtering estimate of the locations of various objects in the vicinity of the
robot computed on the basis of multiple observations received from the
robot’s sensors.

Figure 4.7: The output of perception modules for a typical autonomous vehicle (taken
from https://www.youtube.com/watch?v=tiwVMrTLUWg. The global occupancy grid
is shown in gray (see the sides of the road). The local map is not shown in this picture
but you can imagine that it has occupied voxels at all places where there are vehicles
(purple boxes) and other stationary objects such as traffic light, nearby buildings etc.
Typically, if we know that so and so voxel corresponds to a vehicle, we run an Extended
Kalman Filter for that particular vehicle to estimate the voxels in the local map that
it is likely to be in, in the next time-instant. The local map is a highly dynamic data
structure that is rich in information necessary for planning trajectories of the robot.

4.6 Discussion10

Occupancy grids are a very popular approach to represent the environment11

given the poses of the robot as it travels in this environment. We can also12

use occupancy grids to localize the robot in a future run (which is usu-13

ally the purpose of creating them). Each cell in an occupancy grid stores14

the posterior probability of the cell being occupied on the basis of mul-15

tiple observations {y1, . . . , yk} from respective poses {x1, . . . , xk}. This16

https://www.youtube.com/watch?v=2va15BE-7lQ
https://www.youtube.com/watch?v=tiwVMrTLUWg

22

is a very efficient representation of the 3D world around us with the one1

caveat that each cell is updated independently of the others. But since one2

gets a large amount of data from typical range senors (a 64 beam Velo-3

dyne (https://velodynelidar.com/products/hdl-64e) returns about a 2 million4

points/sec and cheaper versions of this sensor will cost about $100), this caveat5

does not hurt us much in practice. You can watch this talk6

(https://www.youtube.com/watch?v=V8JMwE_L5s0) by the head of Uber’s7

autonomous driving group to get more perspective about localization and8

mapping.9

https://velodynelidar.com/products/hdl-64e/
https://www.youtube.com/watch?v=V8JMwE_L5s0

	Rigid-body transforms and mapping
	Rigid-Body Transformations
	3D transformations
	Rodrigues' formula: an alternate view of rotations

	Quaternions
	Occupancy Grids
	Estimating the map from the data
	Sensor models
	Back to sensor modeling

	3D occupancy grids
	Local Map
	Discussion

